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Semiclassical quantization of separatrix maps
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Quantization of energy balance equations, which describe a separatrixlike motion is presented. The method
is based on an exact canonical transformation of the energy-time pair to the action-angle canonical pair,
(E,t)—(I,0). Quantum mechanical dynamics can be studied in the framework of the new Hamiltonian. This
transformation also establishes a relation between a wide class of the energy balance equations and dynamical
localization of classical diffusion by quantum interference, that was studied in the field of quantum chaos. An
exact solution for a simple system is presented as well.
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I. INTRODUCTION The map(1.2) can be derived from the Hamiltonian
It is known for many application$1—4] that classical H=Ho(E)+V(t,7)=H(E)+ (el v)cog vt)8,,(7),
dynamics near hyperbolic points can be described by a map 1.3

7 in the energy-time E,t) canonical variables7(E,t) where the unperturbed Hamiltonian
—(E,t). This map is known as the separatrix map, and de-

fines a motion in the vicinity of a separatrix, where a period 1 (E
of the unperturbedtwist) map is an arbitrary function of HO(E)=2—f T(E")dE’ (1.4
energy T(E). Its explicit form is defined byn+2 turning &

points as follows 2]: depends only on the enerdy that is conjugate to time,

while 7 is the formal time parameter, and,.(7)

Iogi if n=1 =3, ___8(7—2mn) is the periodics function with period
T(E)~ |E| (1.) 2. Quantization of the Hamiltoniafl.3) in the framework
E-("D2 jf n>1, of the energy-timel,t) canonical pair has been presented in

previous studiessee, for instancg9—11,21). The main de-
where the energy of the separatrix without loss of generalitficiency of quantization of the Hamiltoniaf1.3) is an ap-
is taken to be zero and it is assumed tHEt<1. A pertur-  pearance of the unphysical time for a wave function and this
bation which is a periodic function of time, for instance, fact has been pointed out earlier, in R¢f0,11]. Classically
e sinut, which is relevant for a variety of applications, may it is always possible to establish a link between the formal

be considered. In this cas%,is an energy balance equation time parametetr and the real time for any individual tra-

that describes the energy change over the peFidE): jectory by the solutiort=t(7) (or by canonical transforma-
tion). In quantum mechanicgor a wave functiol, it is no
E,.1=E,+esinut,, longer possible. Therefore, this approach of quantization in
the framework of E,t) variables was used to study time
ths1=t,+T(Eniq), (1.2  independent characteristics, such as localizattall]. On

the other hand, the properties that are explicitly time depen-
where is the frequency of the perturbation of the strengthdent, such as dynamical correlation functions or dynamical
€, and it is assumed th&,=E(t,—0). The period of the quctthlons,_cannot be studied by _th_IS approach. Moreov_er,
unperturbed nonlinear motioR(E,,) describes a wide class there is no rigorous proof of the validity of these asymptotic
of nonlinear systems with variety of applications, including Selutions. It is also believed that the main deficiency is re-
the celestial mechanics of the perturbed Kepler sy$&6i, lated to the semlclassm:illy approxmaie definition of the en-
charge particles in a field of a wave packgt leading to a ergy operator asE=—ihd/dt, where h is the effective
separatrix mesh phenomenon in non-KAolmogorov-  Planck’s constant. There is no physical justification of this
Arnold-Mose) systems[7] (with possible applications for semiclassical definition. Therefore, to overcome these short-
atom cooling trap$8]), and of electron dynamics in super- comings of the quantum description, it is reasonable to re-
conducting Josephson junctiof®|. Maps such as Eq1.2)  write the system in such a form, where the time parameter
are also related to a description of Rydberg atoms in a miappears as the physical time. It is convenient to rewrite the
crowave field by the Kepler majd0,11]. Also Bloch elec- system(1.2) and(1.3) in terms of the action-angle variables
trons in external fields are described by a separatrix mafl,6), related by a canonical transformatiod(E,t,7)
[12-14 and similar systems. Rigorous consideration of the—H(l,6,t), wheret is the real time. This canonical trans-
separatrix map was considered in Réfis7—20. formation must be such that under this variable change one
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transformsHq(E)— Ho(1) and V(t,7)—V(6,t). It should 0
be stressed that for kicked systems this change of variables O(0)=5_+— > 7sinl, (2.6)
has some specific properties, namely, the new potential B
V(6,t) must be independent dfand it must be a function and it is a result of integration of the period& function
only of phased and timet. Otherwise a shift in action at a \yritten in the form
kick is an ambiguous procedure due to the discontinuity of
the actionl (t=t,)) at thenth kick. * 1 12

In what follows, for the semiclassical quantization, the > S(0—2mn)=5_+ — > cosl 6. (2.7)
map (1.2) will be rewritten in the action-angle variables. In T TomE
this case the semiclassical quantization procedure is standagghations(2.2) and (2.5) are the Hamilton equations gener-
[14,16. Semiclassical quantization of area-preserving mapggeq by the Hamiltonian
was subject of earlier studies. In particular, quantization of
monotonic twist mapp22], with interpolating flowg 23] was
considered. We show first, in Sec. Il, that the nf{a®) can H="Hy(l)—2€" sinvt
be rewritten in terms of action-angle variables. Semiclassical
quantization and an exactly solvable problem are presentefharec’ = /277
in Sec. lll. The results are summarized in Sec. IV.

[

0+|21|1sim0}, (2.9

To restore periodicity of the Hamiltonian i the follow-

ing gaugelike transformation is carried out:
Il. EXACT CANONICAL TRANSFORMATION  (E,t)—(1,0)

!

Hamiltonian equations of motion that produce the map J=1+ 6—003vt. (2.9
(1.2) have the following formal form: v
o The corresponding Hamiltonian is
dE/d0=—(9H/at=esinvthw 8(6—2mn), (2.1a o = 4
H=H0(J— 70051/[ —2€' sin vt;1 I—sinl 0="Hp+V.
dt/d 6=9H/IE=T(E)/27, (2.1b (2.10

whereH is given by Eq.(1.3) andd/dé is the formal time  The equations of motiof2.2) and(2.5) take the form
derivative (r=46). Integration overd in the limits (2mn

—0,27n+27—0) gives Eq.(1.2. We obtain from Egs. . ;.

(2.13 and (2.1b the Hamiltonian equations for the action- J=2¢ smvt; cosl 4,

angle variablesl(#) and the real time parametérLet us

start from Eq.(2.1b). Inverting this equation, one obtains

[’

. €'

0=Q<J——c05vt). (2.11
do 4
—=[T(E)27] t=Q(1), (2.2
dt In this form, the equations were derived from the Hamil-
tonianH; therefore, the transformation frohh to , which

where it is supposed thal(E)#0, that means that is a is presented here, is a canonical transformation.

single valued function of.. The frequency)(l) corresponds
to some parametric variable change-E(l) along a trajec-
tory, such that IIl. SEMICLASSICAL QUANTIZATION

dE/dI= 1 23 A. Flogquet operator
=8, @3 Equationg2.11) and(2.10 can be simply quantized semi-
In this case the energfi="H,(l) is an unperturbed Hamil- classically with
tonian with the new action variablewhich is defined in Eq. A - —-
(2.3). From Egs.(2.1a—(2.3) we perform the following J—J=—ihalg6=hn,

chain of parametric changes: - ) ] o ) )
whereh, in our dimensionless units, is a dimensionless pa-

dE dtdE dt dEdI i 24 rameter, that plays the role of Planck’s constant, while a
do do dt de dl dt 24 quantum number operator. In what follotswill be used for
the semiclassical quantization. Since the Hamiltor{ai0
It follows from Egs.(2.13 and(2.4) that is periodic both in time and in angle, the Floquet theory
can be used for the analysis. Therefore, a solution of the
Schralinger equation

o

. Jd
I=esinvt >, 8(0—2mn)=esinvt—-0(6), (2.5

n=-—ow

4 N
where®(6) is a step function of the following form: Ihﬁlﬂ(a’t)_H(n’a’tW(a’t) @D

046210-2



SEMICLASSICAL QUANTIZATION OF SEPARATRIX MAPS PHYSICAL REVIEW E57, 046210(2003

can be considered due to the Floquet theorem in the follow- S Li(e'Iv)coswt(ia )i & ,
ing form: q Hop e =(j| €705 07I] ") (n| Ho(I+ k) [n”)

o e’
(o) =e My, (0,1, (3.2 =2 i”‘Jm(‘??K) 81 i+ mMo(N'+K) Sy
m

where periodicity off{ in both 6 andt is taken into account, (3.11)
and the functions
where J,(X) is the Bessel function. Correspondingly, the
I = (0, =9 (0+2m,t+27/v) (3.3  matrix elements for the additive part of the perturbation in
Eq. (2.10 are
are periodic in time with the periods of the perturbation
2m/v and periodic in# with the period 2r, while O<« 1 €
<1 and\ are a “quasimomentum” and a quasienergy, re- T E—[éj/yj+1_5jryj,1], n#n

spectively. Taking into account that commutation of the n,n’ n—n’
Hamiltonian with the exponentia “ ¢ leads to the shift om 0, n=n’

for n, (3.12

rn ik 6 — el < OT(A+ These matrix elements of Eg8.11) and(3.12 lead to the
N, 6,087 T ((0,1) =€ THN+ 1, 6,1) ¢ 6,t)(,3 4 following equation for the expansion coefficients:

we can rewrite the Schdinger equatior(3.1) in the follow- ORLY
m

- 6,
ing form: . ('75K)Ho(n+ K)®nj+m

4+ —
2 n'zn N—n’

F =P\ . 3. ' 1 = :
()i =P\, 35 S e bu =R ) b,

whereF=F(«) is the so-called Floquet operator

(3.13

. ~Jd .
Fx)=—ih—+H(n+x,6,0), (3.6) Itis similar to a quasi-one-dimensional Anderson-like chain
for the cases whef{y(n+ k) corresponds to a random po-
tential. It is also the generalization of a specific application in
Ref. [24]. The classical motion is chaotic in many types of
T(E) in Eq. (1.2). Therefore, the obtained equation estab-
lishes a relation between a wide class of energy balance
equations of the formgl.2), (1.3), and dynamical localiza-
[ )= 2 énjlMi)- (8.7 tion of the classical chaotic diffusiof25]. In the general
) case this equation is useful for numerical studies. It is ana-
lytically tractable in perturbation theory for the parameter
e/lv<1l. Some examples related to approximate treatments
v ) are considered ifi13,14,26,27. Here, in the framework of
n,j>E|n>|j>:2_emﬂe—'Jvt (3.9 the rigorous consideration, it is instructive to present an ex-
77 actly solvable example, where Ed..4) is linear, with a con-
stant periodT(E)=2#/w. In this case a solution can be
obtained in an explicit form analytically.

with Nand ¢, , as the eigenvalues and eigenfunctions corre
spondingly. The solution is cast in the form of the Fourier
expansion

Moreover, the Fourier harmonics

are the eigenfunctions of the unperturbed system with
=0, andg, ;=(j|(n|#, ) are the coefficients, of the expan-

sion. Matrix elements of the Floquet operator
B. An exact model

FL’in',:Q [(n|E[n")]j") (3.9 An exact solution can be obtained for the harmonic oscil-
’ lator Hqy(l) = wl with constant frequenc§)(1)=w. The lin-
specify the equations for the coefficients ; . First, we cal- ~ear driven system described by the Hamiltorié(i, 6,t) is
culate the matrix elements fdi,. For this purpose we re- integrable. Equatioii3.13 takes the following simple form:

write it formally as

!

A € Ly . ~ A
I+ k— 7003vt) =gl (€'/M)eosti0) (I + k), , .

(3.10 +£3

2 n'#n N—n’

~ ) €'w
h[wn—vj _7\+wK]¢n,j_2_V[¢n,j+1+ ®nj-1]

Ho

[fnj+17 bnrj-1]=0. (3.19

whered, =dldx and it is assumed thd{, does not operate
on functions ofx. Calculation of the matrix element8.9) For the specific case of the harmonic oscillator 0. For
yields, for Eq.(3.10, other linear models, for example, models of an appropriate
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band structure in solidss does not have to vanish. A solu-
tion of Eq.(3.14) is cast in the form of a sinc function by the

following substitution:

(3.19

where the sinc function is sire- (sinx)/x andZ; has to be

énj=Zjsind m(n—N o+ k)],

PHYSICAL REVIEW E 67, 046210(2003

Nj,= vjot+ wn, (3.22
if it is in the interval[0,v), as expected.

IV. SUMMARY

Quantization of energy balance equations, in the form of

determined. In this case the quasienergy spectrum turns of{e map(1.2), is presented. This procedure of quantization

to be

A=wk+wn.

(3.19

Inserting Eq.(3.6) in Eq. (3.14) and taking into account that

sincr(n’—n)=0,

(3.17

!

n#n N—N

since sinm(n’—n)=0, one obtains from Eq.3.14 the fol-
lowing relation forZ; :

22+ 2, 1+2Z;_1]=0, (3.18
wherez= €' w/hv2. The solution i§28]
Z;=2Z;(2)=(—1)J;(2). (3.19

The result, Eqs(3.16 and(3.19, is only a specific solution.
The general solution is found by replacing in Eg§.14) | by

j—]joand\ by A —vj,. The resulting solution of the eigen-

value problem is

N, = Vjot wk+wn, (3.20
and the corresponding eigenfunction is
Zj=(—1)"103;_ (2). (3.21

The Floquet theory implies that on}\yJo in an interval of size

v, say,[ 0,v) should be usefsee Eq(3.2)]. In particular, for
the harmonic oscillator

consists of the two steps. The first one is a transformation of
the Hamiltonian(1.3) to the form(2.10 by the canonical
transformation E,t)—(l,6). The second stage is the semi-
classical quantization. The Hamiltonian formulation of the
problem allows semiclassical quantization of action-angle

variables in the framework of the standard proceduirei
=—iha/a6=hn, whereh is a dimensionless semiclassical

parameter such that the classical limithis>0. It should be
noted that the semiclassical approximation requires that the
width of the potentiaV is larger than the de Broglie wave-
length. Therefore, it is necessary to truncate the Fourier ex-
pansion in Eq(2.6), corresponding to replacement of the
function by a function of finite width. The results obtained in
Sec. Il B in the semiclassical approximation are correct only

up to the leading correction ih to the classical onefl4].

The advantage of the present analysis is that the transition
from Eq. (1.2 to Eq. (2.10 is exact, and wave functions
depend on physical time, while the main deficiency of
straightforward quantization of E@1.2) is an appearance of
an unphysical time parametgt0,11].
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