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Semiclassical quantization of separatrix maps
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Quantization of energy balance equations, which describe a separatrixlike motion is presented. The method
is based on an exact canonical transformation of the energy-time pair to the action-angle canonical pair,
(E,t)→(I ,u). Quantum mechanical dynamics can be studied in the framework of the new Hamiltonian. This
transformation also establishes a relation between a wide class of the energy balance equations and dynamical
localization of classical diffusion by quantum interference, that was studied in the field of quantum chaos. An
exact solution for a simple system is presented as well.
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I. INTRODUCTION

It is known for many applications@1–4# that classical
dynamics near hyperbolic points can be described by a

T̂ in the energy-time (E,t) canonical variablesT̂(E,t)
→(E,t). This map is known as the separatrix map, and
fines a motion in the vicinity of a separatrix, where a peri
of the unperturbed~twist! map is an arbitrary function o
energyT(E). Its explicit form is defined byn12 turning
points as follows@2#:

T~E!;H log
1

uEu
if n51

E2(n21)/2 if n.1,

~1.1!

where the energy of the separatrix without loss of genera
is taken to be zero and it is assumed thatuEu!1. A pertur-
bation which is a periodic function of time, for instanc
e sinnt, which is relevant for a variety of applications, ma

be considered. In this case,T̂ is an energy balance equatio
that describes the energy change over the periodT(E):

En115En1e sinntn ,

tn115tn1T~En11!, ~1.2!

wheren is the frequency of the perturbation of the streng
e, and it is assumed thatEn5E(tn20). The period of the
unperturbed nonlinear motionT(En) describes a wide clas
of nonlinear systems with variety of applications, includi
the celestial mechanics of the perturbed Kepler system@5,6#,
charge particles in a field of a wave packet@2# leading to a
separatrix mesh phenomenon in non-KAM~Kolmogorov-
Arnold-Moser! systems@7# ~with possible applications fo
atom cooling traps@8#!, and of electron dynamics in supe
conducting Josephson junctions@9#. Maps such as Eq.~1.2!
are also related to a description of Rydberg atoms in a
crowave field by the Kepler map@10,11#. Also Bloch elec-
trons in external fields are described by a separatrix m
@12–16# and similar systems. Rigorous consideration of
separatrix map was considered in Refs.@17–20#.
1063-651X/2003/67~4!/046210~5!/$20.00 67 0462
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The map~1.2! can be derived from the Hamiltonian

H5H0~E!1Ṽ~ t,t!5H0~E!1~e/n!cos~nt !d2p~t!,
~1.3!

where the unperturbed Hamiltonian

H0~E!5
1

2pE
E

T~E8!dE8 ~1.4!

depends only on the energyE that is conjugate to timet,
while t is the formal time parameter, andd2p(t)
[(n52`

` d(t22pn) is the periodicd function with period
2p. Quantization of the Hamiltonian~1.3! in the framework
of the energy-time (E,t) canonical pair has been presented
previous studies~see, for instance,@9–11,21#!. The main de-
ficiency of quantization of the Hamiltonian~1.3! is an ap-
pearance of the unphysical time for a wave function and
fact has been pointed out earlier, in Refs.@10,11#. Classically
it is always possible to establish a link between the form
time parametert and the real timet for any individual tra-
jectory by the solutiont5t(t) ~or by canonical transforma
tion!. In quantum mechanics~for a wave function!, it is no
longer possible. Therefore, this approach of quantization
the framework of (E,t) variables was used to study tim
independent characteristics, such as localization@9–11#. On
the other hand, the properties that are explicitly time dep
dent, such as dynamical correlation functions or dynam
fluctuations, cannot be studied by this approach. Moreo
there is no rigorous proof of the validity of these asympto
solutions. It is also believed that the main deficiency is
lated to the semiclassically approximate definition of the
ergy operator asÊ52 i h̃]/]t, where h̃ is the effective
Planck’s constant. There is no physical justification of th
semiclassical definition. Therefore, to overcome these sh
comings of the quantum description, it is reasonable to
write the system in such a form, where the time parame
appears as the physical time. It is convenient to rewrite
system~1.2! and ~1.3! in terms of the action-angle variable
(I ,u), related by a canonical transformationH(E,t,t)
→H(I ,u,t), wheret is the real time. This canonical trans
formation must be such that under this variable change
©2003 The American Physical Society10-1



bl
ti

o

he
n
d
ap
o

ic
nt

a

-

-

r-

il-

i-

pa-

the

IOMIN, FISHMAN, AND ZASLAVSKY PHYSICAL REVIEW E 67, 046210 ~2003!
transformsH0(E)→H0(I ) and Ṽ(t,t)→V(u,t). It should
be stressed that for kicked systems this change of varia
has some specific properties, namely, the new poten
V(u,t) must be independent ofI and it must be a function
only of phaseu and timet. Otherwise a shift in action at a
kick is an ambiguous procedure due to the discontinuity
the actionI (t5tn) at thenth kick.

In what follows, for the semiclassical quantization, t
map ~1.2! will be rewritten in the action-angle variables. I
this case the semiclassical quantization procedure is stan
@14,16#. Semiclassical quantization of area-preserving m
was subject of earlier studies. In particular, quantization
monotonic twist maps@22#, with interpolating flows@23# was
considered. We show first, in Sec. II, that the map~1.2! can
be rewritten in terms of action-angle variables. Semiclass
quantization and an exactly solvable problem are prese
in Sec. III. The results are summarized in Sec. IV.

II. EXACT CANONICAL TRANSFORMATION „E,t…\„I ,u…

Hamiltonian equations of motion that produce the m
~1.2! have the following formal form:

dE/du52]H/]t5e sinnt (
n52`

`

d~u22pn!, ~2.1a!

dt/d u5]H/]E5T~E!/2p, ~2.1b!

whereH is given by Eq.~1.3! and d/du is the formal time
derivative (t[u). Integration overu in the limits (2pn
20,2pn12p20) gives Eq. ~1.2!. We obtain from Eqs.
~2.1a! and ~2.1b! the Hamiltonian equations for the action
angle variables (I ,u) and the real time parametert. Let us
start from Eq.~2.1b!. Inverting this equation, one obtains

du

dt
5@T~E!/2p#215V~ I !, ~2.2!

where it is supposed thatT(E)Þ0, that means thatt is a
single valued function ofu. The frequencyV(I ) corresponds
to some parametric variable changeE5E(I ) along a trajec-
tory, such that

dE/dI5V~ I !. ~2.3!

In this case the energyE5H0(I ) is an unperturbed Hamil
tonian with the new action variableI, which is defined in Eq.
~2.3!. From Eqs. ~2.1a!–~2.3! we perform the following
chain of parametric changes:

dE

du
5

dt

du

dE

dt
5

dt

du

dE

dI

dI

dt
5 İ . ~2.4!

It follows from Eqs.~2.1a! and ~2.4! that

İ 5e sinnt (
n52`

`

d~u22pn!5e sinnt
]

]u
Q~u!, ~2.5!

whereQ(u) is a step function of the following form:
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Q~u!5
u

2p
1

1

p (
l 51

`
1

l
sin lu, ~2.6!

and it is a result of integration of the periodicd function
written in the form

(
n52`

`

d~u22pn!5
1

2p
1

1

p (
l 51

`

coslu. ~2.7!

Equations~2.2! and ~2.5! are the Hamilton equations gene
ated by the Hamiltonian

H5H0~ I !22e8 sinntFu1(
l 51

`
1

l
sin luG , ~2.8!

wheree85e/2p.
To restore periodicity of the Hamiltonian inu, the follow-

ing gaugelike transformation is carried out:

J5I 1
e8

n
cosnt. ~2.9!

The corresponding Hamiltonian is

H5H0S J2
e8

n
cosnt D22e8 sinnt(

l 51

`
1

l
sin lu[H01V.

~2.10!

The equations of motion~2.2! and ~2.5! take the form

J̇52e8 sinnt(
l 51

`

coslu,

u̇5VS J2
e8

n
cosnt D . ~2.11!

In this form, the equations were derived from the Ham
tonianH; therefore, the transformation fromH to H, which
is presented here, is a canonical transformation.

III. SEMICLASSICAL QUANTIZATION

A. Floquet operator

Equations~2.11! and~2.10! can be simply quantized sem
classically with

J→ Ĵ52 i h̃]/]u5h̃n̂,

whereh̃, in our dimensionless units, is a dimensionless
rameter, that plays the role of Planck’s constant, whilen̂ is a
quantum number operator. In what followsh̃ will be used for
the semiclassical quantization. Since the Hamiltonian~2.10!
is periodic both in time and in angleu, the Floquet theory
can be used for the analysis. Therefore, a solution of
Schrödinger equation

i h̃
]

]t
c~u,t !5Ĥ~ n̂,u,t !c~u,t ! ~3.1!
0-2
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can be considered due to the Floquet theorem in the foll
ing form:

c~u,t !5e2 ilteikucl,k~u,t !, ~3.2!

where periodicity ofĤ in bothu andt is taken into account
and the functions

cl,k[cl,k~u,t !5cl,k~u12p,t12p/n! ~3.3!

are periodic in time with the periods of the perturbati
2p/n and periodic inu with the period 2p, while 0<k
,1 andl are a ‘‘quasimomentum’’ and a quasienergy, r
spectively. Taking into account that commutation of t
Hamiltonian with the exponentialeik u leads to the shift onk
for n̂,

Ĥ~ n̂,u,t !eik ucl,k~u,t !5eik uĤ~ n̂1k,u,t !cl,k~u,t !,
~3.4!

we can rewrite the Schro¨dinger equation~3.1! in the follow-
ing form:

F̂~k!cl,k5h̃lcl,k , ~3.5!

whereF[F(k) is the so-called Floquet operator

F̂~k!52 i h̃
]

]t
1Ĥ~ n̂1k,u,t !, ~3.6!

with landcl,k as the eigenvalues and eigenfunctions cor
spondingly. The solution is cast in the form of the Four
expansion

ucl,k&5(
n, j

fn, j un&u j &. ~3.7!

Moreover, the Fourier harmonics

un, j &[un&u j &5
An

2p
einue2 i j nt ~3.8!

are the eigenfunctions of the unperturbed system withe
50, andfn, j5^ j u^nucl,k& are the coefficients, of the expan
sion. Matrix elements of the Floquet operator

Fn,n8
j , j 8 5^ j u^nuF̂un8&u j 8& ~3.9!

specify the equations for the coefficientsfn, j . First, we cal-
culate the matrix elements forĤ0. For this purpose we re
write it formally as

Ĥ0S Ĵ1k2
e8

n
cosnt D5ei (e8/n)cosnt( i ]k)Ĥ0~ Ĵ1k!,

~3.10!

where]k[]/]k and it is assumed thatH0 does not operate
on functions ofk. Calculation of the matrix elements~3.9!
yields, for Eq.~3.10!,
04621
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H0n,n8
j , j 8 5^ j uei (e8/n)cosnt( i ]k)u j 8&^nuĤ0~ Ĵ1k!un8&

5(
m

i mJmS i
e8

n
]kD d j 8, j 1mH0~n81k!dn8,n ,

~3.11!

where Jm(x) is the Bessel function. Correspondingly, th
matrix elements for the additive part of the perturbation
Eq. ~2.10! are

Vn,n8
j , j 8 5H 1

2

e8

n2n8
@d j 8, j 112d j 8, j 21#, nÞn8

0, n5n8.
~3.12!

These matrix elements of Eqs.~3.11! and ~3.12! lead to the
following equation for the expansion coefficients:

(
m

i mJmS i
e8

n
]kDH0~n1k!fn, j 1m

1
e8

2 (
n8Þn

1

n2n8
@fn8, j 112fn8, j 21#5h̃~l1n j !fn, j .

~3.13!

It is similar to a quasi-one-dimensional Anderson-like cha
for the cases whenH0(n1k) corresponds to a random po
tential. It is also the generalization of a specific application
Ref. @24#. The classical motion is chaotic in many types
T(E) in Eq. ~1.2!. Therefore, the obtained equation esta
lishes a relation between a wide class of energy bala
equations of the forms~1.2!, ~1.3!, and dynamical localiza-
tion of the classical chaotic diffusion@25#. In the general
case this equation is useful for numerical studies. It is a
lytically tractable in perturbation theory for the parame
e/n!1. Some examples related to approximate treatme
are considered in@13,14,26,27#. Here, in the framework of
the rigorous consideration, it is instructive to present an
actly solvable example, where Eq.~1.4! is linear, with a con-
stant periodT(E)52p/v. In this case a solution can b
obtained in an explicit form analytically.

B. An exact model

An exact solution can be obtained for the harmonic os
lator H0(I )5vI with constant frequencyV(I )5v. The lin-
ear driven system described by the HamiltonianH(I ,u,t) is
integrable. Equation~3.13! takes the following simple form:

h̃@vn2n j 2l1vk#fn, j2
e8v

2n
@fn, j 111fn, j 21#

1
e8

2 (
n8Þn

1

n2n8
@fn8, j 112fn8, j 21#50. ~3.14!

For the specific case of the harmonic oscillatork50. For
other linear models, for example, models of an appropr
0-3
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band structure in solids,k does not have to vanish. A solu
tion of Eq.~3.14! is cast in the form of a sinc function by th
following substitution:

fn, j5Zj sinc@p~n2l/v1k!#, ~3.15!

where the sinc function is sincx5(sinx)/x andZj has to be
determined. In this case the quasienergy spectrum turns
to be

l5vk1vn. ~3.16!

Inserting Eq.~3.6! in Eq. ~3.14! and taking into account tha

(
n8Þn

1

n2n8
sincp~n82n!50, ~3.17!

since sinp(n82n)50, one obtains from Eq.~3.14! the fol-
lowing relation forZj :

2 jZ j1z@Zj 111Zj 21#50, ~3.18!

wherez5e8v/h̃n2. The solution is@28#

Zj[Zj~z!5~21! j Jj~z!. ~3.19!

The result, Eqs.~3.16! and~3.19!, is only a specific solution
The general solution is found by replacing in Eq.~3.14! j by
j 2 j 0 andl by l2n j 0. The resulting solution of the eigen
value problem is

l j 0
5n j 01vk1vn, ~3.20!

and the corresponding eigenfunction is

Zj5~21! j 2 j 0Jj 2 j 0
~z!. ~3.21!

The Floquet theory implies that onlyl j 0
in an interval of size

n, say,@0,n) should be used@see Eq.~3.2!#. In particular, for
the harmonic oscillator
-

ta

v,

an

tu

04621
ut

l j 0
5n j 01vn, ~3.22!

if it is in the interval @0,n), as expected.

IV. SUMMARY

Quantization of energy balance equations, in the form
the map~1.2!, is presented. This procedure of quantizati
consists of the two steps. The first one is a transformation
the Hamiltonian~1.3! to the form ~2.10! by the canonical
transformation (E,t)→(I ,u). The second stage is the sem
classical quantization. The Hamiltonian formulation of t
problem allows semiclassical quantization of action-an
variables in the framework of the standard procedure:I→ Î

52 i h̃]/]u[h̃n̂, where h̃ is a dimensionless semiclassic
parameter such that the classical limit ish̃→0. It should be
noted that the semiclassical approximation requires that
width of the potentialV is larger than the de Broglie wave
length. Therefore, it is necessary to truncate the Fourier
pansion in Eq.~2.6!, corresponding to replacement of thed
function by a function of finite width. The results obtained
Sec. III B in the semiclassical approximation are correct o
up to the leading correction inh̃ to the classical ones@14#.
The advantage of the present analysis is that the trans
from Eq. ~1.2! to Eq. ~2.10! is exact, and wave function
depend on physical time, while the main deficiency
straightforward quantization of Eq.~1.2! is an appearance o
an unphysical time parameter@10,11#.
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